Features

- 6 Bit Phase Shifter
- 360° Coverage, LSB $=5.6^{\circ}$
- TTL Control Inputs
- MSAG ${ }^{\text {™ }}$ Process

Description

The MAPCGM0001-Die is a 6-bit Phase Shifter with Parallel TTL Input Control. This product is fully matched to 50 ohms on both the input and output. The part has 360° of phase coverage with LSB of 5.6°.

Fabricated using M/A-COM's repeatable, high performance and highly reliable GaAs Multifunction Self-Aligned Gate (MSAG ${ }^{\text {TM }}$) Process, each device is 100% RF tested on wafer to ensure performance compliance.

M/A-COM's MSAG ${ }^{\text {TM }}$ process features robust silicon-like manufacturing processes, planar processing of ion implanted transistors, multiple implant capability enabling power, low-noise, switch and digital FETs on a single chip, and polyimide scratch protection for ease of use with automated manufacturing processes. The use of refractory metals and the absence of platinum in the gate metal formulation prevents hydrogen poisoning when employed in hermetic packaging.

Primary Applications

- Satellite Communication
- Phased Array Radar

Absolute Maximum Conditions ${ }^{1}$

Parameter	Symbol	Absolute Maximum	Units
Input Power	P_{IN}	36	dBm
Digital Supply Voltage	V_{EE}	-6.0	V
Digital Supply Current	I_{EE}	20	mA
Junction Temperature	T_{j}	180	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-55 to +150	${ }^{\circ} \mathrm{C}$

1. Operation outside of these ranges may reduce product reliability. Operation at other than the typical values may result in performance outside the guaranteed limits.

Recommended Operating Conditions

Characteristic	Symbol	Min	Typ	Max	Unit
Digital Supply Voltage	V_{EE}	-5.2	-5	-4.8	V
Control Voltage	$\mathrm{V}_{\text {control pads }}$				
Logic High		2.8	5	5	V
Logic Low	0	0	0.4	V	

Electrical Characteristics: $\mathrm{T}_{\mathrm{B}}=25^{\circ} \mathrm{C}^{2}, \mathrm{Z}_{0}=50 \Omega, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}$

Parameter	Symbol	Typical	Units
Bandwidth	f	$1.0-1.9$	GHz
Insertion Loss	IL	5.3	dB
Input VSWR (At Reference)	VSWR	$1.3: 1$	
Output VSWR (At Reference)	VSWR	$1.2: 1$	0
RMS Phase Error	RMS	6.6	c
Phase Range	$\Delta \Phi$	354	dB
Gain Variation over all Phase Shifter settings	$\Delta \mathrm{G}$	m	
Digital Supply Current	I_{EE}	ITOI	dBm
Input Third Order Intercept	$\mathrm{P}_{1 \mathrm{~dB}}$	27	dBm
Input 1-dB Compression Point			

2. $\mathrm{T}_{\mathrm{B}}=$ MMIC Base Temperature

Operating Instructions

This device is static and light sensitive. The digital circuitry operation can be impaired under high intensity light, e.g. microscope light. Please handle with care. To operate the device, follow these steps.

1. Power Up: Apply $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}$.
2. Apply Logic Voltages to control Circuits as listed in Recommended Operating Conditions.
3. Power Down: Set $\mathrm{V}_{\mathrm{EE}}=0$.

Figure 1. Reference State Insertion Loss, Input and Output VSWR vs. Frequency

Figure 3. Phase Shift Over All Phase States

Figure 5. Input VSWR Over All Phase States

Figure 2. Corrected RMS Phase Error Over All Phase States

Figure 4. Loss Variation Over All Phase States

Figure 6. Output VSWR Over All Phase States

- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.

Phase Shifter

1.0-1.9 GHz

Mechanical Information

Chip Size: $3.814 \times 2.054 \times 0.075 \mathrm{~mm} \quad(150 \times 81 \times 3$ mils)

Bond Pad Information

Pad	Type	Nominal Voltage	Size	
			$(\mu \mathrm{m})$	(mils)
IN, OUT	RF	N / A	100×200	4×8
$\mathrm{~V}_{\mathrm{EE}}$	DC	-5.0 V	125×125	5×5
P0 to P5	Control	$0 / 5 \mathrm{~V}$	125×125	5×5

Electronics

Assembly and Bonding Diagram

Figure 8. Recommended bonding diagram for pedestal mount.
Support circuitry typical of MMIC characterization.

Truth Table ${ }^{3}$

Designation	Description	Level	State
P5	180° Phase Bit : MSB	Logic High	Phase Shift $\approx-180^{\circ}$
P4	90° Phase Bit	Logic High	Phase Shift $\approx-90^{\circ}$
P3	45° Phase Bit	Logic High	Phase Shift $\approx-45^{\circ}$
$\mathrm{V}_{\text {EE }}$	Digital Supply Voltage	-5 V	ON
P2	22.5° Phase Bit	Logic High	Phase Shift $\approx-22.5^{\circ}$
P1	11.2° Phase Bit	Logic High	Phase Shift $\approx-11.2^{\circ}$
P0	5.6° Phase Bit : LSB	Logic High	Phase Shift $\approx-5.6^{\circ}$

3. All Phase Bits at Logic Low $=$ Reference State.

Assembly Instructions:

Die attach: Use AuSn (80/20) 1 mil. preform solder. Limit time @ $300^{\circ} \mathrm{C}$ to less than 5 minutes.
Wirebonding: Bond @ $160^{\circ} \mathrm{C}$ using standard ball or thermal compression wedge bond techniques. For DC pad connections, use either ball or wedge bonds. For best RF performance, use wedge bonds of shortest length, although ball bonds are also acceptable.

Biasing Note: Must apply negative bias to $\mathrm{V}_{\text {EE }}$ before applying positive bias to Control Pads.

